East Doncaster Secondary College

Year 9 ALPHA Pre-Methods Mathematics Semester 1 Exam, 2021

ection	Туре		Questions	Total Marks for Section
	Writing	g Time : 90 №	linutes	
	Readir	n <mark>g Time</mark> : 10 M	vinutes	
Date:			A	_
Teache	er (Circle):	RAB	RAI	
Name:				_

Section	Туре	Questions	Total Marks for Section
A	Multiple Choice	17	/17
В	Short Answer	14	/54
С	Extended Response	1	/9
			/80

Information:

- Students **are not permitted** to bring mobile phones and/or any other unauthorised electronic devices into the examination room
- Students **are permitted** to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers and one bound reference book.
- Students are not permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.
- A scientific calculator is allowed in this exam
- Answers to **Section A**, questions must be circled on the attached multiple-choice sheet. If a mistake is made clearly indicate correct response. Two responses for this section are not accepted.
- EAL students are allowed to bring into the examination room a hard copy dictionary; electronic dictionaries are **NOT** allowed.
- Express answers to 2 decimal places where necessary unless instructed otherwise.
- Please use the detachable sheet at the back of the exam to answer the Multiple-Choice Section

Section A – Multiple Choice

		•					
Lin	ear Alge	bra					
1	Which of th	ne following is the solution	on to	$\frac{x-4}{2} = 3?$			
	А	x = -2	В	<i>x</i> = 2	С	x=10	
	D	x=-10	E	$x = \frac{11}{2}$			
2	A line with	a gradient of $\frac{-3}{4}$. A lin	e pe	rpendicular to this line v	vould	have a gradient of	
	А	$\frac{-4}{3}$	В	$\frac{4}{3}$	с	$\frac{3}{4}$	
	D	$\frac{3}{4}$	E	0			
3	The rule o	f a linear graph with gr	adie	nt, $\frac{3}{4}$ and a y-intercept of	of <u>5</u> , in	terms of $y = mx + c$ is:	
	А	-8y = -6x - 5	В	8y = 6x + 5	С	-6y = 8x - 5	
	D	6y = 8x + 5	E	-8y = 5x - 6			
4	Which of th	ne following is the y-inte	rcept	to the graph of $12x + 4y$	= 8?		
	А	y = -2	В	y = 2	С	y = 8	
	D	y = -8	Ε	None of the above			
5	The fully sir	mplified version of $\frac{3x-3y}{5y-5x}$	is:				
	А	Cannot be simplified	В	$\frac{x-y}{y-x}$	С	<u>3</u> 5	
	D	5 3	E	<u>3</u> 5			
6	The point o	of intersection of <i>y = ax</i> a	nd x	<i>= -b</i> is:			
	А	(1, -b)	В	(- <i>b, ax</i>)	с	(b, ab)	
	D	(<i>-b, -ab</i>)	E	(a, -b)			

Fu	unctions and Non-Linear Algebra					
7	Which of the following, is the expanded form of $(x - 4)(x + 3)$					
	Α	$x^{2} - x - 12 = 0$ B $x^{2} - x + 12 = 0$ C $x^{2} + x - 12 = 0$				
	D	$x^{2} + x + 12 = 0$ E $-x^{2} - x - 12 = 0$				
8	Which of t	the following is the fully factorised form of $8x^2y^3 + 12x^3y$				
	-					
	A	$8x^2y(y^2 + 4x)$ B $4x^2y(2y^2 + 3x)$ C $4xy(2xy^2 + 3x^2)$				
	D	$4xy(2y^2 + 3x)$ E It cannot be factorised				
9	Which sta	Attement about the graph of $y = -4x^2 + 4x - 3$, is <u>incorrect</u> ?				
	Α	It is inverted B Has no x-intercepts C It is a maximum				
	D	y-intercept at (0,-3) E Turning point at (0.5,-4)				
10	A quadrat in the 2 nd	tic has equation $y = (x + h)^2 + k$. If this quadratic has two x-intercepts and a turning point quadrant, we know that:				
	А	h < 0 and k < 0 B $h > 0 and k < 0$ C $h < 0 and k > 0$				
	D	h > 0 and $k > 0$ E $h < 0$ and $k = 0$				
11	The heigh	ht of a golf hall can be modelled using the graph below				
11	The heigh	In or a gon ban can be modelled using the graph below				
		(1,75, 15,51) (1,12,75) (1,15,75) (1,15,7				
	Which of	the following statements is true?				
	A T	The ball reaches a height of 17 metres.				
	B	The ball takes 2 seconds to get to its maximum height.				
	C	The ball is at a height of 7.85 metres twice.				
	D 1	The ball has a maximum height of 1.75 metres.				
	E	The ball takes 4.9 seconds to hit the ground				

12	The equation	on of this graph is of the	e forn	n y = (x + a)(x + b). The value	es of a	a and b are respectively:	
			у				
		() 1	5			
	А	a = 1, b = 5	В	a = -1, b = -5	С	a = 5, b = -1	
	D	<i>a</i> = -1, <i>b</i> = 5	E	a = -5, b = -1			
Inc	dices and	l Surds					
13	What of the	e following surd express	sion, i	is equivalent to $\sqrt{35}$?			
	А	$\sqrt{30} + \sqrt{5}$	В	$7 \times \sqrt{5}$	с	$\sqrt{5} \times \sqrt{7}$	
	D	$5 \times \sqrt{7}$	E	None of the above			
14	The recurri	ng decimal 0.3636 or	0. 36	can be written as the fraction	on $\frac{4}{11}$		
	This means	it is a					
	A. Irra B. Rat	ational fraction					
	C. Bot	th rational and irrationa	l				
	E. Ne	ither rational or irration	al				
15	Fully simpli	fied, $5x^3y^0 \times y^5 \times 3x^2$	²y eq	uals			
	А	$8x^5y^6$	В	$15x^5y^5$	с	$3x^2y^6$	
	D	$15x^5y^6$	Ε	$8x^5y^5$			
16	$\frac{18x^3}{12(xy)^2 \times}$	$\frac{y^4}{3x^4y^{-5}}$ simplifies to					
	Α	$\frac{y^7}{2x^3}$	В	$\frac{3y^7}{x^3}$	C	$\frac{1}{2x^3y^7}$	
	D	$\frac{y^7}{2x^2}$	E	$\frac{y^7}{24x^3}$			
17	Fully simpli	fied, $3\sqrt{14} imes 5\sqrt{16}$ equ	lates	to:			
	А	30√21	В	$60\sqrt{14}$	C	$20\sqrt{14}$	
	D	$15\sqrt{21}$	E	8\sqrt{84}			

Section B – Short Answer

.11					
	Solve the	following for x			
	Α.	2(5x-7) = 4x	(2 Marks)	B. $\frac{7x+3}{5} = \frac{9x-8}{3}$	(2 Marks)
	Solve eac	h of the following inequalit	ies	1 - 2r + 2	
	А.	$3(15x-7) \ge 6x$	(2 Marks)	B. $\frac{1-2x}{5} \le \frac{x+2}{3}$	(2 Marks)
	Pat is 20	vears older than his son Jan	nes. In two years Pa	at will be twice as old as lames.	
	How old a	are they now?			(3 Marks)

No	Non-Linear Algebra and Further Graphing				
7	Factorise each of the following expressions				
	A. $121x^2 - 5$ (2 Marks)	B. $\frac{2x^2+6x}{x-2} \div \frac{x^2-9}{x^2-5x+6}$	(3 Marks)		
8	For the following equation: $f(x) = -12x^2 + 144x$ - A. Factorise the function , and hence, determine	- 432 the value/s of x for which f(x) = 0.	(2 Marks)		
9					
	For the equation $f(x) = -\frac{1}{6}(x+2)^2 - 5$; State the correct order of transformations that occur	from the graph of $f(x) = x^2$	(3 Marks)		

10	Factorise the following quadratic equations	s by groupi	ng, and hence solve them to find	the values of x
10	A. $2x^2 + 11x + 12$	(2 Marks)	B. $6x^2 + 10x + 4$	(2 Marks)
11	Find the exact solutions to the equation, 22	$x^2 + 8x +$	-5 = 0 by first completing the	square. (3 Marks)
12	Find the discriminant to the equation, $3x^2$ equation by using the quadratic formula.	$x^{2} + 8x - 2$	15 = 0, and hence, find the 2	exact solutions to the (3 Marks)

13	Sketch the graph of the equation, $y = x^2 - 12x + 11$	(3 Marks)
	diago and Sunda	
14	Simplify the following surds	
	A. $3\sqrt{72}$ (2 Marks) B. $6\sqrt{250}$	(2 Marks)

13	Simplify the following and express the	e answer with pos	itive indices.	
	A. $\left(\frac{x^4}{y^4z^2}\right)^3$	(1 Mark)	B. $\frac{a^{-5}}{b^{-4}} \times \left(\frac{b^2}{2a}\right)^{-3}$	(2 Marks)
14	Rationalise each of the following			
14	Rationalise each of the following A. $\frac{4\sqrt{10}}{\sqrt{6}}$	(2 Marks)	B. $\frac{5}{2\sqrt{3}} - \frac{4}{5\sqrt{2}}$	(3 Marks)
14	Rationalise each of the following A. $\frac{4\sqrt{10}}{\sqrt{6}}$	(2 Marks)	B. $\frac{5}{2\sqrt{3}} - \frac{4}{5\sqrt{2}}$	(3 Marks)
14	Rationalise each of the following A. $\frac{4\sqrt{10}}{\sqrt{6}}$	(2 Marks)	B. $\frac{5}{2\sqrt{3}} - \frac{4}{5\sqrt{2}}$	(3 Marks)
14	Rationalise each of the following A. $\frac{4\sqrt{10}}{\sqrt{6}}$	(2 Marks)	B. $\frac{5}{2\sqrt{3}} - \frac{4}{5\sqrt{2}}$	(3 Marks)
14	Rationalise each of the following A. $\frac{4\sqrt{10}}{\sqrt{6}}$	(2 Marks)	B. $\frac{5}{2\sqrt{3}} - \frac{4}{5\sqrt{2}}$	(3 Marks)

Section C – Extended Response

Algebra

1 At St Louis, USA, there is a giant steel archway called Gateway Arch, which can be closely modelled as a parabola. The width (at ground level) is 160 m and height is 187 m.

A. Sketch a graph of the arch. Label and scale the axes and give coordinates for both the turning point and intercepts. Note: The arch must start at the origin on the Cartesian Plane below. (3 Marks)

B. State the horizontal distance at which the arch is at the highest point?

(1 Mark)

C.	Determine the equation that models the arch, in terms of h, which is the height in metres above the ground and x, which is the horizontal distance from each endpoint of the arch. Write the equation in the form $h = x(x - y)^2 + l$ he find its the second and x.
	the form $h = a(x - c)^2 + k$ by finding the constants a, c and k. (3 Marks)
D.	Suppose a small plane with a wingspan (i.e. wingtip to wingtip) of 19.8 metres attempts to fly centrally through the arch at a height of 170 metres above the ground level. Will the plane fit through the arch at this height? Justify your answer with the appropriate calculations.
	the arch at this height? Justify your answer with the appropriate calculations. (2 Marks)

Student's Name:

2021 Exam

Multiple Choice Answer Sheet

Teacher (please circle):LLOMCNRABROS

THIS SHEET MAY BE DETACHED.

CIRCLE ONLY ONE ANSWER PER QUESTION.

If you make a mistake make sure it is completely rubbed out.

Question 1	А	В	С	D	E
Question 2	А	В	С	D	E
Question 3	А	В	С	D	E
Question 4	А	В	С	D	E
Question 5	А	В	С	D	E
Question 6	А	В	С	D	E
Question 7	А	В	С	D	E
Question 8	А	В	С	D	E
Question 9	А	В	С	D	E
Question 10	А	В	С	D	E
Question 11	А	В	С	D	E
Question 12	А	В	С	D	E
Question 13	А	В	С	D	E
Question 14	А	В	С	D	E
Question 15	А	В	С	D	E
Question 16	А	В	С	D	E
Question 17	А	В	С	D	E