East Doncaster Secondary College

Year 9 ALPHA Mathematics Semester 1 Exam, 2022

Name:	Pholosen	MARKUNG SCHEME	
Teacher (Circle):	RAB XUE	
Date:			

Reading Time: 10 Minutes
Writing Time: 90 Minutes

Section	Туре	Questions	Total Marks for Section
Α	Multiple Choice	10	10
В	Short Answer	13	45
С	Extended Response	1	5
			60

Information:

- Students are not permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room
- Students are permitted to bring into the examination room: pens, pencils, highlighters, erasers, sharpeners, rulers and one bound reference book.
- Students are not permitted to bring into the examination room: blank sheets of paper and/or white out liquid/tape.
- A scientific calculator is allowed in this exam
- EAL students are allowed to bring into the examination room a hard copy dictionary;
 electronic dictionaries are NOT allowed.
- Express answers to 2 decimal places where necessary unless instructed otherwise.
- Please fill in the boxes at the bottom of Page 2 to answer the Multiple-Choice Section

Section A – Multiple Choice

Question 1

The gradient of the line which passes through the points (1,8) and (3,-6) is

- **A.** 7
- (B) -7
- **C.** $\frac{7}{2}$
- **D.** $\frac{-7}{2}$

Question 2

Which of the following has a solution of x = -5?

- **A.** 3x 7 = 8
- **B.** $\frac{2x+3}{13} = 1$
- $\frac{12}{x} = -2.4$
- **D.** $\frac{3}{2-x} = 1$

Question 3

The pair of linear equations, y=x+3 and y=-2x+6, intersect at the point

- **A.** (-3,0)
- **B.** (3,6)
- (C.) (1,4)
- **D.** (-1.8)

Question 4

Which of the following is irrational

- **A.** $2\sqrt{5}$
- **B.** $\sqrt[3]{64}$
- **c.** $\sqrt[5]{32}$
- **D.** $2\sqrt{100}$

Question 5

Which of the following is not equivalent to $\sqrt{48}$

- **A.** $2\sqrt{12}$
- $B. \quad \sqrt{8} \times \sqrt{6}$
- **c.** $4\sqrt{3}$

Question 6

What is the factorised form of 3(a-2) - b(a-2)

- (a 2)(3 b)
- **B.** (a-2)(b-3)
- **c.** (a-2)(3+b)
- **D.** (a+2)(3+b)

Question 7

The solutions to $x^2 - 18 = 0$ are:

- **(A)** $x = -3\sqrt{2}, 3\sqrt{2}$
- **B.** $x = -4\sqrt{2}, 4\sqrt{2}$
- **c.** $x = -2\sqrt{3}, 2\sqrt{3}$
- **D.** x = -18, 18

Question 8

The factorised form of $x^2 + 6x - 7$ is:

- **(A)** $(x+3)^2 16$
- **B.** $(x-3)^2-16$
- **c.** $(x+3)^2+16$
- **D.** $(x-3)^2+16$

Question 9

The exact area of the slanted *surface* of a cone with radius 2 cm and slant height 6 cm is:

- \bigcirc 12 π cm²
- **B.** $18\pi \ cm^2$
- **C.** $3\pi \ cm^2$
- **D.** $6\pi \ cm^2$

Question 10

A sphere has a volume equal to its surface area (in value). The radius of the sphere is:

- **A.** 1 unit
- B. 2 units
- **C.** π units
- 3 units

Question	1	2	3	4	5	6	7	8	9	10
Response	В	C	C	A	D	Α	A	A	A	D

Section B - Short Answer

Question 1 (2 + 2 = 4 Marks)

Solve each of the following for x

a)
$$3x + 5 = 5x + 11$$

b) $\frac{x-3}{3} = \frac{5-x}{4}$

$$4(x-3)=3(5-x)$$

Question 2 (2 + 3 = 5 Marks)

Solve each of the following inequalities for x

a)
$$3 - \frac{5x}{7} \le -2$$

' -5x 4 35

b) $\frac{5x-6}{3} - \frac{1-2x}{4} \ge 3x + 4$

$$X \leq \frac{-75}{10}$$

Question 3 (2 Marks)

Find the exact distance between the pair of points (-2, 4) and (-7, -4).

1/8)2+(5)2

a) Sketch the graph of y = -2x - 3, labelling all axes intercepts

b) State the equation of the line perpendicular to y=-2x-3, which passes through $(-\frac{3}{2},6)$

M2= {	IM LM IDENTIFIED	-
: y-y= = (x-x)		
: 4-6= 2(x+32)		
: y= 2x+34+6		NOTE: No consequential manchs
-: 4= 2x + 27 -: 4= 2x + 4	(1A)	

c) Show that the equation, 3y + 6x = -7 would have no solutions with the equation in part a).

y=-2x-3						
: 3y+6x=-7	1	y=-2-3	(1M) - REAMANGE	EQUETION	

-. No solutions as unco are parametel

Calculate the midpoint of the line segment joining the points (-3, 1) and (5, 3)

$$M_{3} \begin{pmatrix} -3+5 & \frac{1+3}{2} \\ 2 & 2 \end{pmatrix}$$

Question 6 (3 Marks)

Solve the following pair of simultaneous equations

$$6y + 3x = -9$$

$$5x - 3y = 11$$

$$5x - 3y = 11$$
 x2

x=1

Sus X=1 wrs (1)

Factorise each of the following

a)
$$x^2 + 2x - 63$$

b)
$$2x^2 + 7x + 3$$

(x+9)(x-7)

Question 7

		, \		,	١
•	0			/ -	١.
	1	V+5	141	x+3	П
•	LM	~ 'U	111	しんてつ	1
		1			

(1 + 2 = 3 Marks)

Simplify the following expression

$$\frac{x^2 - 8x - 20}{x^2 + 10x + 21} \div \frac{x^2 - 100}{x^2 - 3x - 18}$$

= (x+2)(x-6) = (x+7)(x+6)

Question 9 (3 Marks)

Using the method of 'Completing the Square', solve for the values of 'x'

$$2x^2 + 12x - 1 = 0$$

$$x^2 + 6x = \frac{1}{2}$$

Question 10 (2 Marks)

Solve the following using the quadratic formula

$$4x^2 - 12x + 1 = 0$$

X= 12±1144-4

7

8

12±1128

Show that $4x^2 + kx + 1 = 0$, has only one solution, when $k = \pm 4$

$\Delta = b^2 - 4ac$

$$k^2 - 16 = 0$$

Question 12 (3 + 3 = 6 Marks)

Simplify each of the following using positive indices

a)
$$\frac{15x^2y^4}{2xy} \div \frac{(5xy^3)^2}{4(xy)^{-1}}$$

b)
$$(8x^6y)^{\frac{1}{3}} \times 9x^{\frac{1}{5}}y^{\frac{2}{3}}$$

15xV3 -	25x ² y ⁶
2	4x7 47

1. 5x2 y4

POSITIVE INDICES

This composite 3D solid comprises of a hemisphere and a cone, as shown.

Leave all answers in exact form unless told otherwise.

a) Determine the radius of the hemisphere

b) Calculate the exact slant height of the cone.

c) Calculate the total surface area of this object. Express your answer in exact value.

TSA	Trs+	1	4	וו	
	•				

NOTE: ACCEPT BOTH ANSWERS

Section C - Extended Response

Question 1 (2 + 3 = 5 Marks)

A cylinder has a radius of $\left(\frac{1}{\sqrt{2}-1}\right)cm$ and a height of $\left(\sqrt{2}+1\right)cm$

a) Show that the volume of this cylinder can be expressed as $\left(\frac{\pi(\sqrt{2}+1)}{3-2\sqrt{2}}\right)$ cm

V≈ TT-ZXh

b) Hence or otherwise, show that the volume of the cylinder is exactly $\pi(7+5\sqrt{2})cm^3$

$$\sqrt{\frac{\pi(12+1)}{3-2\sqrt{2}}} \times \frac{3+2\sqrt{2}}{3+2\sqrt{2}}$$

$$V = \pi \left(\frac{1}{2} + 1 \right) \left(\frac{3 + 2}{2} \right)$$

$$V = \pi \left(\frac{3}{2} + 4 + 3 + 2 \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{3}{2} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{3}{2} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{3}{2} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{3}{2} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{3}{2} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{3}{2} + \frac{3}{2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{3}{2} \right$$

END OF EXAMINATION