Year 10 Math Methods

2023 Semester 1

Indices, Surds, Logarithms & Algebra Skills CAT

Student Name: Solutions

Writing time: 40 minutes

Total marks: 35

Materials allowed: General Stationary (pens, pencils, rulers etc)

Instructions:

- For questions worth more than one-mark, full working out must be shown.
- Unless otherwise stated, exact answers must be used

PART A: Multiple Choice

- Place your answer into the table at the end of this section
- No working needs to be shown.
- Each correct answer is worth 1 mark

	Questions	Working Space if Required
1	The number 0. 159261 is:	
	A A natural number	
	B An integer	
(C A rational number	
	D An irrational number	
	E An imaginary number	
2	When simplified $\frac{12xy^6}{9x^2} \times \frac{3(x^5y^2)^0}{y^4}$ becomes:	$\frac{36xy^6}{9x^2y^4} = \frac{4y^2}{5c}$
	A $6xy^2$	(it y)
($B \frac{4y^2}{x}$	
	$C = \frac{4y^2}{3x}$	
	D $4xy^2$	
	$E \frac{2y^2}{3x^2}$	
3	When simplified, $\left(\frac{4a^{-2}}{5b^{-1}}\right)^{-3}$ becomes:	$\frac{175}{64} \times \frac{a^6}{b^3}$
	$A \frac{4a^6}{5b^3}$	64
($\frac{125a^6}{64b^3}$	
	C $\frac{64b^3}{125a^6}$	
	D $\frac{64a^6}{125b^3}$	
	$E \frac{4a^6}{5b^3}$	

4	When fully simplified, $\sqrt{96} + 5\sqrt{24}$ is equal	V2
	to:	V16×6 + 5 J4×6
	A $7\sqrt{24}$	VI6×6 + 5 J4×6 = 4 J6 + 10 V6
	B $6\sqrt{3} + 10\sqrt{6}$	
	C 9√6	
	D $9\sqrt{24}$	
	E 14 $\sqrt{6}$	
5	$\frac{5}{2+\sqrt{3}}$ when expressed with a rational	$5(2-53) = 10-5\sqrt{3}$
	denominator is equal to:	49-5
	A $10 + 5\sqrt{3}$	
	$B \frac{10+5\sqrt{3}}{7}$	
	C $10 - \sqrt{3}$	
	D $10 - 5\sqrt{3}$	
	$E \sqrt{3}$	
6	$3 \log_{10}(a) + \log_{10}(b) - \log_{10}(c)$ is equivalent to:	$log_{10}\left(a^{3}b\right)$
	$\left(A \log_{10} \left(\frac{a^3 b}{c} \right) \right)$	
	B $3\log(a+b-c)$	
	C $3\log_{10}\left(\frac{ab}{c}\right)$	
	D $\log_{10}(a^3 + b - c)$	
	$E \log_{10}\left(\frac{3ab}{c}\right)$	
7	The expression $\frac{2x+3}{4} - \frac{x-1}{2}$ simplifies to:	2x+3 - (2x-2)
	A $\frac{x-2}{2}$	2243-(22-2) 4
	$B \frac{x+5}{4}$	=
	$C \frac{5}{4}$	
	$D \frac{x+4}{4}$	
	$E = \frac{1}{4}$	

8	Evaluate the expression $(3abc^3)^3$, when	$(3(-1)(2)(1)^3)^3$
	a = -1, b = 2, and $c = 1$	$-(1)^3$
	A 54	$= (-6)^3$ = - 216
	B 216	610
	C 81	
	D -200	
(E -216	
9	Solve for x: $\frac{x}{5} - \frac{1}{7} = \frac{1}{35}$	$7x-5 = \frac{1}{35}$
	A $x = 4$	
	$B x = \frac{4}{7}$	7x = 6 $x = \frac{6}{7}$
	C x = 6	7.
	$D x = \frac{6}{7}$	
	$E x = -\frac{4}{7}$	
10	Solve for y:	$\log_{10}\left(\frac{x-z}{x^3}\right) = \log_{10}\left(\frac{z}{y}\right)$
-	$\log_{10}(x-2) - 3\log_{10}(x) = -\log_{10} y$	
($A \frac{x^3}{x-2}$	$y = \frac{x^3}{x-2}$
	$B \frac{x-2}{x^3}$	
	$C - \frac{x-2}{x^3}$	
	D $2x + 2$	
	$E \frac{1}{2x+2}$	

Q1	Q2	Q3	Q4	Q5
C	В	В	E	D
Q6	Q7	Q8	Q9	Q10
A	Ċ	E	D	A

PART B: Short Answer

= 8x 2 1

• You must show full working for any questions worth more than one mark

Question 1

- a) Simplify and write in index form: $\sqrt{4x}^3$
- b) Simplify and write in surd form: $(16a^2)^{\frac{1}{4}}$ = 2 Ja (

(1+1 = 2 marks)

Question 2

Simplify the following:

a)
$$(m^6 n^3)^{\frac{1}{3}} \div (m^{-\frac{1}{2}}n^3)^2$$

 $= \frac{m^2 n}{m^{-1}n^6}$ (b)
 $= \frac{m^3}{n^5}$ (b)

b)
$$2\sqrt{6} \times 4\sqrt{3}$$

= $8\sqrt{18}$
= $24\sqrt{2}$

c)
$$\frac{x+2}{2} + \frac{x-6}{3}$$

= $\frac{3(3x+2) + 2(3x-6)}{6}$ (1)
= $\frac{33x+6 + 23x - 12}{6}$
= $\frac{53x-6}{6}$ (1)

~

d)
$$\frac{2}{x+3} \times \frac{x+7}{8} \div \frac{12(x+7)}{x+3}$$

= $\frac{2(3c+7)}{8(3c+5)} \times \frac{(3c+3)}{12(3c+7)}$ () change $\pm +0 \times$
 \oplus cancelling
= $\frac{1}{48}$ () (Aword marks
 $as yearsonable$)

(2+2+2+3 = 9 marks)

Question 3

Solve for x:

a)
$$\frac{3x}{5} + 6 = 0$$

 $\frac{3x}{5} = -6$ (1)
 $3x = -36$
 $x = -10$ (1)
b) $2(4x + 12) = 5(3x - 5)$
 $G = 8 = 5(3x - 25)$
 $G = 8 = 5(3x - 25)$
 $G = 8 = 7x$ (1)
 $x = 7x$ (1)
 $x = 7x$ (1)

(2+3 = 5 marks)

Question 4

a) Transpose the formula $a = \sqrt{\frac{3V}{h}}$ to make V the subject $a^2 = \frac{3V}{h}$ (b) $V = \frac{a^2h}{3}$ (c)

b) Hence or otherwise, find the value of V when a = 3 and h = 4.

$$V = \frac{9 \times 4}{3} \textcircled{0}$$
$$= (2 \textcircled{1})$$

(2+2 = 4 marks)

Question 5

a) Find the positive value of x, if $\log_x 64 = 2$

$$\infty^2 = 64 \text{ (b)}$$
$$\infty = 8 \text{ (b)}$$

b) Solve for x: $\log_2(4x - 2) = \log_2(2x - 1) + x$

$$\log_2\left(\frac{4\infty-2}{2\infty-1}\right) = \Im(1)$$

$$\log_2\left(\frac{2(2\infty-1)}{2\infty-1}\right) = \Im(1)$$

$$\log_2(2) = \Im(1)$$

$$\Im(2) = \Im(1)$$

$$\Im(2) = \Im(1)$$

(2+3 = 5 marks)

END OF TEST

.